Toward Mention Detection Robustness with Recurrent Neural Networks
نویسندگان
چکیده
One of the key challenges in natural language processing (NLP) is to yield good performance across application domains and languages. In this work, we investigate the robustness of the mention detection systems, one of the fundamental tasks in information extraction, via recurrent neural networks (RNNs). The advantage of RNNs over the traditional approaches is their capacity to capture long ranges of context and implicitly adapt the word embeddings, trained on a large corpus, into a task-specific word representation, but still preserve the original semantic generalization to be helpful across domains. Our systematic evaluation for RNN architectures demonstrates that RNNs not only outperform the best reported systems (up to 9% relative error reduction) in the general setting but also achieve the state-of-the-art performance in the cross-domain setting for English. Regarding other languages, RNNs are significantly better than the traditional methods on the similar task of named entity recognition for Dutch (up to 22% relative error reduction).
منابع مشابه
Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملRecurrent Artificial Neural Networks for the Detection of Oil Spills from Doppler Radar Imagery
This paper discusses the application of artificial neural networks (ANNs) to the detection of oil spills in sea clutter environments from the classification of radar backscatter signals. A comparison and evaluation of different network architectures regarding reliability of detection and robustness to varying sea states/wind conditions shows that for this problem best results are achieved with ...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملCoreferent Mention Detection using Deep Learning
A mention may or may not be coreferred elsewhere in the document. Identifying those mentions that are corefered (called coreferents) is an important step in many NLP tasks, like coreference resolution. To classify a mention as singleton or coreferent using just one sentence is a challenging problem, but previous work suggests that there are cues in a sentence which can be used to predict if a m...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1602.07749 شماره
صفحات -
تاریخ انتشار 2016